1,467 research outputs found

    Invariant approach to flavour-dependent CP-violating phases in the MSSM

    Get PDF
    We use a new weak basis invariant approach to classify all the observable phases in any extension of the Standard Model (SM). We apply this formalism to determine the invariant CP phases in a simplified version of the Minimal Supersymmetric SM with only three non-trivial flavour structures. We propose four experimental measures to fix completely all the observable phases in the model. After these phases have been determined from experiment, we are able to make predictions on any other CP-violating observable in the theory, much in the same way as in the Standard Model all CP-violation observables are proportional to the Jarlskog invariant.Comment: 25 pages, 12 figure

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Flavour Changing Higgs Couplings in a Class of Two Higgs Doublet Models

    Full text link
    We analyse various flavour changing processes like thu,hct\to hu,hc, hτe,τμh\to \tau e,\tau\mu as well as hadronic decays hbs,bdh\to bs,bd, in the framework of a class of two Higgs doublet models where there are flavour changing neutral scalar currents at tree level. These models have the remarkable feature of having these flavour-violating couplings entirely determined by the CKM and PMNS matrices as well as tanβ\tan\beta. The flavour structure of these scalar currents results from a symmetry of the Lagrangian and therefore it is natural and stable under the renormalization group. We show that in some of the models the rates of the above flavour changing processes can reach the discovery level at the LHC at 13 TeV even taking into account the stringent bounds on low energy processes, in particular μeγ\mu\to e\gamma.Comment: 33 pages, 8 figures; matches version accepted for publicatio

    Intelligent data analysis approaches to churn as a business problem: a survey

    Get PDF
    Globalization processes and market deregulation policies are rapidly changing the competitive environments of many economic sectors. The appearance of new competitors and technologies leads to an increase in competition and, with it, a growing preoccupation among service-providing companies with creating stronger customer bonds. In this context, anticipating the customer’s intention to abandon the provider, a phenomenon known as churn, becomes a competitive advantage. Such anticipation can be the result of the correct application of information-based knowledge extraction in the form of business analytics. In particular, the use of intelligent data analysis, or data mining, for the analysis of market surveyed information can be of great assistance to churn management. In this paper, we provide a detailed survey of recent applications of business analytics to churn, with a focus on computational intelligence methods. This is preceded by an in-depth discussion of churn within the context of customer continuity management. The survey is structured according to the stages identified as basic for the building of the predictive models of churn, as well as according to the different types of predictive methods employed and the business areas of their application.Peer ReviewedPostprint (author's final draft

    Modeling the thermal behavior of biosphere 2 in a non-controlled environment using bond graphs

    Get PDF
    Biosphere 2 is a closed ecological system of high complexity built to deepen the understanding of ecological systems, to study the dynamics of closed ecologies, and to learn to control their behavior. The use of modeling and simulation is crucial in the achievement of these goals. Understanding a physical system is almost synonymous with possessing a model of its comportment. The main goal of this study is the development of a dynamic bond graph model that represents the thermal behavior of the complex ecological system under study, Biosphere 2. In this work, a first model that captures the behavior of the ecological system in a non-controlled environment is presented.Postprint (published version

    Feature selection algorithms: a survey and experimental evaluation

    Get PDF
    In view of the substantial number of existing feature selection algorithms, the need arises to count on criteria that enables to adequately decide which algorithm to use in certain situations. This work reviews several fundamental algorithms found in the literature and assesses their performance in a controlled scenario. A scoring measure ranks the algorithms by taking into account the amount of relevance, irrelevance and redundance on sample data sets. This measure computes the degree of matching between the output given by the algorithm and the known optimal solution. Sample size effects are also studied.Postprint (published version

    Automatic construction of rules fuzzy for modelling and prediction of the central nervous system

    Get PDF
    The main goal of this work is to study the performance of CARFIR (Automatic Construction of Rules in Fuzzy Inductive Reasoning) methodology for the modelling and prediction of the human central nervous system (CNS). The CNS controls the hemodynamical system by generating the regulating signals for the blood vessels and the heart. The main idea behind CARFIR is to expand the capacity of the FIR methodology allowing it to work with classical fuzzy rules. CARFIR is able to automatically construct fuzzy rules starting from a set of pattern rules obtained by FIR. The new methodology preserves as much as possible the knowledge of the pattern rules in a compact fuzzy rule base. The prediction results obtained by the fuzzy prediction process of CARFIR methodology are compared with those of other inductive methodologies, i.e. FIR, NARMAX and neural networksPostprint (published version

    A fuzzy rule model for high level musical features on automated composition systems

    Get PDF
    Algorithmic composition systems are now well-understood. However, when they are used for specific tasks like creating material for a part of a piece, it is common to prefer, from all of its possible outputs, those exhibiting specific properties. Even though the number of valid outputs is huge, many times the selection is performed manually, either using expertise in the algorithmic model, by means of sampling techniques, or some times even by chance. Automations of this process have been done traditionally by using machine learning techniques. However, whether or not these techniques are really capable of capturing the human rationality, through which the selection is done, to a great degree remains as an open question. The present work discusses a possible approach, that combines expert’s opinion and a fuzzy methodology for rule extraction, to model high level features. An early implementation able to explore the universe of outputs of a particular algorithm by means of the extracted rules is discussed. The rules search for objects similar to those having a desired and pre-identified feature. In this sense, the model can be seen as a finder of objects with specific properties.Peer ReviewedPostprint (author's final draft

    Variation propagation of bench vises in multi-stage machining processes

    Get PDF
    Comunicación presentada a MESIC 2019 8th Manufacturing Engineering Society International Conference (Madrid, 19-21 de Junio de 2019)Variation propagation has been successfully modeled by the Stream of Variation (SoV) approach in multistage machining processes. However, the SoV model basically supports 3-2-1 fixtures based on punctual locators and other workholding systems such as conventional vises are not considered yet. In this paper, the SoV model is expanded to include the fixture- and datum-induced variations on workholding devices such as bench vises. The model derivation is validated through assembly and machining simulations on Computer Aided Design software. The case study analyzed shows an average error of part quality prediction between the SoV model and the CAD simulations of 0.26%
    corecore